Absolute and Relative Rate Constants for the Reactions $CH_3C(O)O_2 + NO$ and $CH_3C(O)O_2$ + NO₂ and Thermal Stability of CH₃C(O)O₂NO₂

Jens Sehested,^{*,†} Lene Krogh Christensen, Trine Møgelberg,[‡] and Ole J. Nielsen^{*,§}

Atmospheric Chemistry, Plant Biology and Biogeochemistry Department, Risø National Laboratory, DK-4000 Roskilde, Denmark

Timothy J. Wallington*, I and Andrei Guschin

Ford Research Laboratory, SRL-3083, Ford Motor Company, P.O. Box 2053, Dearborn, Michigan 48121-2053

John J. Orlando^{\perp} and Geoffrey S. Tyndall^{∇}

Atmospheric Chemistry Division, National Center for Atmospheric Research, P.O. Box 3000, Boulder, Colorado 80307

Received: September 4, 1997; In Final Form: December 2, 1997

A pulse-radiolysis system was used to measure absolute rate constants for the reactions of $CH_3C(O)O_2$ radicals with NO and NO₂ at 295 K and 1000 mbar total pressure of SF₆. When the rate of formation and decay of NO₂ using its absorption at 400.5 and 452 nm were monitored, the rate constants $k(CH_3C(O)O_2 + NO) =$ $(2.0 \pm 0.3) \times 10^{-11}$ and $k(CH_3C(O)O_2 + NO_2) = (1.0 \pm 0.2) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ were determined. Long path-length Fourier transform infrared spectrometers were used to study the rate-constant ratio k(CH₃C- $(O)O_2 + NO/k(CH_3C(O)O_2 + NO_2)$ in 6–700 Torr total pressure of N₂ diluent at 243–295 K. At 295 K in 700 Torr of N₂ diluent $k(CH_3C(O)O_2 + NO)/k(CH_3C(O)O_2 + NO_2) = 2.07 \pm 0.21$. The results are discussed in the context of the atmospheric chemistry of acetylperoxy radicals.

1. Introduction

Acetyl peroxy radicals, CH₃C(O)O₂, are formed during the atmospheric degradation of oxygenated organic compounds such as acetaldehyde, acetone, and methylglyoxal and react with HO₂, NO, NO₂, or other peroxy radicals $(R'O_2)$:

$$CH_3C(O)O_2 + HO_2 \rightarrow products$$
 (1)

$$CH_3C(O)O_2 + NO \rightarrow CH_3C(O)O + NO_2$$
 (2)

 $CH_3C(0)O_2 + NO_2 + M \rightleftharpoons CH_3C(0)O_2NO_2 + M$ (3,-3)

$$CH_3C(O)O_2 + R'O_2 \rightarrow products$$
 (4)

Reaction 3 forms CH₃C(O)O₂NO₂ (peroxyacetyl nitrate or PAN), which has sufficient stability toward thermal decomposition in the free troposphere to be transported over long distances from urban high-NO_x areas to remote low-NO_x areas. The efficiency of such long-range transport is determined by the rate constants of reactions 1-4, the concentrations of HO₂, NO, NO_2 , and other peroxy radicals (R'O₂), and the thermal stability of PAN.

Moortgat et al.,^{1,2} Roehl et al.,³ and Villenave et al.⁴ determined k_1 to be $4.3 \times 10^{-13} \exp(1040/T) \text{ cm}^3 \text{ molecule}^{-1}$ s^{-1} ,² and k_4 to be 2.8 × 10⁻¹² exp(530/*T*) (R'O₂ = CH₃C(O)- O_2), ¹ 1.4 × 10⁻¹¹ (R'O₂ = CH₃O₂, 298 K), ¹ 1.0 × 10⁻¹¹ (R'O₂) = CH₃O₂, 298 K),⁴ and 1.0 \times 10⁻¹¹ cm³ molecule⁻¹ s⁻¹ (R'O₂) = $C_2H_5O_2$, 298 K).⁴ k_3 was studied by Bridier et al.,⁵ Addison et al.,⁶ and Basco and Parmar.⁷ The rate constants reported by Addison et al. and Basco and Parmar are a factor of 2-3 lower than reported by Bridier et al. As discussed elsewhere, the study of Bridier et al.⁵ was more comprehensive than those of Addison et al.⁶ and Basco and Parmer,⁷ and the data by Bridier et al. are considered more reliable. Bridier et al.⁵ report $k_3 = 9.6 \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹ at 298 K and 760 Torr total pressure of N_2 .

Recently, two absolute studies of k_2 have been reported.^{10,11} At room temperature Villalta and Howard¹¹ measured $k_2 = (2.0)$ \pm 0.3) \times 10⁻¹¹ while Maricq and Szente¹⁰ report $k_2 = (1.4 \pm$ $(0.2) \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. The objective of the present study is to improve our understanding of the reactions of $CH_3C(O)O_2$ with NO and NO₂. We have measured absolute values of k_2 and k_3 using pulse radiolysis coupled with timeresolved UV absorption spectroscopy employing two different chemical systems. The FTIR spectrometer systems at Ford Motor Company and the National Center for Atmospheric Research (NCAR) were used to measure the rate constant ratio k_2/k_3 and the thermal stability of CH₃C(O)O₂NO₂.

2. Experimental Section

The three different experimental systems used for this work are described in detail elsewhere¹²⁻¹⁵ and are discussed briefly here. The uncertainties reported in this paper are two standard deviations unless otherwise stated. Standard error propagation methods were used to calculate combined uncertainties.

2.1. Pulse Radiolysis System. CH₃C(O)O₂ radicals were generated by radiolysis of either CH₃CHO/O₂/CO₂/NO_x or CH₃-

^{*} To whom correspondence should be addressed.

[†]E-mail: jens.sehested@risoe.dk.

[‡] Present address: Danish Institute of Fundamental Metrology, Building 307, Anker Engelunds Vej 1, DK-2800 Lyngby, Denmark.

[§] E-mail: ole-john.nielsen@risoe.dk.

[&]quot;E-mail: twalling@ford.com.

[⊥]E-mail: orlando@acd.ucar.edu.

[∇]E-mail: tyndall@acd.ucar.edu.

CHO/O₂/SF₆/NO_x gas mixtures in a 1-L stainless steel reactor by a 30-ns pulse of 2-MeV electrons from a Febetron 705B field-emission accelerator. The radiolysis dose, referred to herein as a fraction of the maximum dose achievable, was varied by insertion of stainless steel attenuators between the accelerator and the chemical reactor. The analyzing light was obtained from a pulsed Xenon arc lamp and reflected in the reaction cell by internal White-type optics. The length of the cell is 10 cm, and the optical path length for the analysis light was 120 cm. The analyzing light was monitored by a photomultiplier attached to a monochromator operated at a spectral resolution of 0.8 nm. All transients were results of single-pulse experiments.

 CO_2 or SF_6 was used as diluent gas. Radiolysis of CO_2 and SF_6 produces oxygen and fluorine atoms, respectively:

$$\operatorname{CO}_2 \xrightarrow{2 - \operatorname{MeV} e^-} \operatorname{CO} + 0$$
 (5)

$$SF_6 \xrightarrow{2-MeV e^-} F + products$$
 (6)

 CO_2 or SF_6 was always present in excess to minimize the relative importance of direct radiolysis of other compounds in the gas mixtures.

The O-atom yield following radiolysis of CO_2 was determined using the absorbance of ozone at 254 nm following radiolysis of mixtures of 50 mbar of O_2 and 950 mbar of CO_2 .

$$O + O_2 + M \rightarrow O_3 + M \tag{7}$$

The filled circles in Figure 1A show the absorbance after the formation of ozone had ceased as a function of the radiolysis dose. As seen from this figure, the absorbance is proportional to the radiolysis dose. The slope is 0.441 ± 0.021 . Using σ_{254} nm(O₃) = 1.15×10^{-17} cm² molecule⁻¹ ¹⁶ we derive an O atom yield of $(7.75 \pm 0.54) \times 10^{14}$ cm⁻³ at full dose and 1000 mbar of CO₂. The error includes statistical uncertainty in the slope of the data in Figure 1A and a 5% systematic uncertainty associated with the ozone absorption cross section.

The fluorine atom yield was determined by two different methods: first, by measuring the yield of CH_3O_2 radicals following radiolysis of mixtures of 10 mbar CH_4 , 40 mbar O_2 , and 950 mbar SF_6 ,

$$F + CH_4 \rightarrow CH_3 + HF \tag{8}$$

$$CH_3 + O_2 + M \rightarrow CH_3O_2 + M \tag{9}$$

and second, by measuring the loss of NO₂ following radiolysis of mixtures of 0.5 mbar of NO₂ and 999.5 mbar of SF₆,

$$F + NO_2 + M \rightarrow FNO_2 + M \tag{10}$$

The maximum transient absorbance at 240 and 260 nm ascribed to CH_3O_2 radicals is plotted in Figure 1A, while the changes in absorbance at 400.5 and 452 nm due to loss of NO_2 via reaction 10 are shown in Figure 1B. As seen from Figure 1, the absorbance is proportional to the radiolysis dose up to 42% of maximum dose. At higher doses the absorbance falls below that expected from extrapolation of the low-dose data. We ascribe this to loss of radicals via unwanted radical-radical reactions at high doses. Based on an optical path length of 120 cm, the slopes of the straight lines through the low-dose data in Figure 1, 0.712 ± 0.014 (CH_3O_2 , 240 nm); 0.494 ± 0.011 (CH_3O_2 , 260 nm); -0.1040 ± 0.0044 (NO_2 , 400.5 nm); -0.0780 ± 0.0015 (NO_2 , 452 nm); and $\sigma_{240nm}(CH_3O_2) = (4.42 \pm 0.44) \times 10^{-18}, 9 \sigma_{260nm}(CH_3O_2) = (3.18 \pm 0.32) \times 10^{-18}, 9$

Figure 1. (A) Maximum transient absorptions versus radiolysis dose. Circles are data obtained using mixtures of 50 mbar of O_2 , 950 mbar of CO_2 , and a montoring wavelength of 254 nm. Squares are data obtained using mixtures of 10 mbar of CH₄, 40 mbar of O_2 , 950 mbar of SF₆, and a montoring wavelength of 260 nm. Triangles are data obtained using mixtures of 10 mbar of CH₄, 40 mbar of O_2 , 950 mbar of SF₆, and a montoring wavelength of 240 nm. (B) Absorbance loss at 452 nm (squares) and 400.5 nm (circles) as a function of dose following radiolysis of mixtures of 0.5 mbar of NO₂ and 1000 mbar of SF₆. An optical path length of 120 cm was used. The straight lines are linear regressions through the low-dose data (filled symbols). See text for details.

 $\sigma_{400.5nm}(NO_2) = (6.5 \pm 0.65) \times 10^{-19}$ and $\sigma_{452\ nm}(NO_2) = (4.5 \pm 0.45) \times 10^{-19}\ cm^2$ molecule $^{-1,16-19}$ the F-atom yield was determined to be $(3.25 \pm 0.33) \times 10^{15}$, $(3.14 \pm 0.32) \times 10^{15}$, $(3.07 \pm 0.33) \times 10^{15}$, and $(3.33 \pm 0.34) \times 10^{15}\ cm^{-3}$ at full dose and 1000 mbar SF₆. Quoted uncertainties reflect both statistical uncertainties in the slopes from Figure 1 and a 10% uncertainty in $\sigma(CH_3O_2)$ and $\sigma(NO_2)$. It is gratifying to note the good agreement among these four different determinations. In the following we choose to use an average of the four determinations with a 10% uncertainty, $[F]_0 = (3.20 \pm 0.32) \times 10^{15}\ cm^{-3}$.

Reagents used were the following: 10-100 mbar CH₃CHO (>99.5%); 20-120 mbar O₂ (ultrahigh purity); 850-900 mbar CO₂ (>99.9%); 870-1000 mbar SF₆ (>99.9%); 0.29-0.71 mbar NO (>99.8%); 0.23-0.63 mbar NO₂ (>98%). All gases were used as received.

Four sets of experiments were performed using the pulseradiolysis system. First, mixtures of CH_3CHO , O_2 , NO, and CO_2 were radiolyzed and the formation of NO₂ was monitored at 400.5 and 452 nm to provide measurements of k_2 . Second, mixtures of CH₃CHO, O₂, NO₂, and CO₂ were radiolyzed and the decay of NO₂ was monitored at 400.5 and 452 nm to provide measurements of k_3 . Third, k_2 was determined from the rate of formation of NO₂ using radiolysis of mixtures of CH₃CHO, O₂, NO, and SF₆ and detection wavelengths of 400.5 and 452 nm. Finally, k_3 was determined from the rate of decay of NO₂ upon radiolysis of CH₃CHO/O₂/NO₂/SF₆ mixtures using detection wavelengths of 400.5 and 452 nm.

2.2. FTIR Systems at Ford and NCAR. The experimental systems at Ford¹⁴ and NCAR¹⁵ are described elsewhere and only discussed briefly here. In both systems chemical analysis was performed using FTIR spectroscopy. Experiments at Ford were conducted at 293-308 K and 5.9-700 Torr total pressure of N₂/O₂ diluent. Experiments at NCAR were performed over the temperature range 240-295 K in 30-700 Torr total pressure of N₂/O₂ diluent. The system at Ford Motor Company consists of a 2-m-long, 140-L evacuable Pyrex chamber surrounded by 22 UV fluorescent lamps interfaced to a Mattson Instruments Inc. Sirius 100 FTIR spectrometer. The system at NCAR consists of a 47-L stainless steel reactor fitted with a quartz window at one end to allow photolysis using a filtered xenon arc lamp. A Bomem DA 3.01 FTIR spectrometer was interfaced to a Hanst-type optical arrangement mounted within the reaction cell. The path lengths for the analyzing infrared beam were 28 m (Ford) and 33 m (NCAR), the spectral resolutions were 0.25 cm^{-1} (Ford) and 0.1–0.5 cm^{-1} (NCAR), infrared spectra were derived from 32 (Ford) and 100-200 (NCAR) coadded interferograms.

Initial concentrations (and purities) of the gas mixtures used were 16-26 mTorr of CH₃CHO (>99%), 49-460 mTorr of chlorine (>99%), 29–100 mTorr of NO_x (>99%), and 5.9– 700 Torr of O₂/N₂ (both >99.999%) diluent. Isotopically labeled ¹³CH₃¹³CHO was used as the reactant in the experiments at Ford. Nonlabeled acetaldehyde was used at NCAR. Products were quantified by fitting reference spectra of the pure compounds obtained at appropriate total pressures to the observed product spectra using integrated absorption features. The procedure was as follows. The CH₃CHO, NO, and NO₂ reactants were quantified and subtracted from the product spectra using characteristic absorption features over the wavelength regions $800-1500 \text{ cm}^{-1}$. CO₂ and CH₃C(O)O₂NO₂ were then identified and quantified using features at 2000-2400 and 800-1500 cm⁻¹, respectively. With the exception of CH₃C(O)O₂-NO₂, all reagent and reference compounds were obtained from commercial sources. Reference spectra of CH₃C(O)O₂NO₂ and ¹³CH₃¹³C(O)O₂NO₂ were obtained by irradiation of acetaldehyde/Cl₂/NO₂/O₂ mixtures and equating the resulting peroxyacetyl nitrate features to the loss of acetaldehyde (corrected for a small, <2%, formation of CO₂ caused by the unavoidable presence of a small amount of NO in the reaction system). At 1163 cm⁻¹ σ (CH₃C(O)O₂NO₂) = 1.47 × 10⁻¹⁸ cm² molecule⁻¹ while at 1133 cm⁻¹ σ (¹³CH₃¹³C(O)O₂NO₂) = 1.21 × 10⁻¹⁸ cm² $molecule^{-1}.^{20}$

3. Results

3.1. Absolute Rate Constant for the Reaction of CH₃C-(O)O₂ Radicals with NO Using O Atom Initiation. The formation of NO₂ was studied by monitoring the absorbance at 400.5 and 452 nm following the radiolysis (full dose) of mixtures of 0.30-0.71 mbar of NO, 50 mbar of O₂, 75–100 mbar of CH₃CHO, and 850–875 mbar of CO₂. Figure 2 shows five absorption transients obtained using a detection wavelength of 400.5 nm. The maximum transient absorption at 400.5 and

Figure 2. Absorption transients at 400.5 nm following pulsed radiolysis of mixtures of 0.30–0.71 mbar NO, 50 mbar O₂, 75–100 mbar CH₃-CHO, and 850–875 mbar CO₂ (single pulses, full dose, and optical path length of 120 cm). For clarity, the transients are separated vertically by 0.01 units. The smooth solid lines are simulations using $k_2 = 2 \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹. Additional simulations of the transient where [NO]₀ = 0.43 mbar using $k_2 = 1.7 \times 10^{-11}$ and 2.3 × 10⁻¹¹ cm³ molecule⁻¹ s⁻¹ are shown with smooth dashed lines.

452 nm was observed to scale in a fashion consistent with the absorption cross sections for NO₂ at these two wavelengths, $\sigma_{400.5 \text{ nm}}(\text{NO}_2) = 6.5 \times 10^{-19}$ and $\sigma_{452 \text{ nm}}(\text{NO}_2) = 4.5 \times 10^{-19}$ cm² molecule⁻¹.¹⁶⁻¹⁹ In addition, the formation rate increased with increasing NO concentration (see Figure 2). It seems reasonable to assume that the observed absorption is caused by NO₂ formed from the following set of reactions:

$$\operatorname{CO}_2 \xrightarrow{2-\operatorname{MeV} e^-} \operatorname{CO} + \operatorname{O}$$
 (5)

$$O + CH_3CHO \rightarrow CH_3CO + OH$$
(11)

$$OH + CH_3CHO \rightarrow CH_3CO + H_2O$$
 (12)

$$CH_3CO + O_2 + M \rightarrow CH_3C(O)O_2 + M$$
(13)

$$CH_3C(O)O_2 + NO \rightarrow CH_3C(O)O + NO_2$$
 (2a)

$$CH_3C(O)O_2 + NO + M \rightarrow CH_3C(O)ONO_2 + M$$
 (2b)

Consistent with previous work⁸ and as discussed in section 3.6, we assume in the following that reaction 2b is unimportant and that $CH_3C(O)O$ radicals decompose immediately after their formation.

$$CH_3C(O)O + M \rightarrow CH_3 + CO_2 + M$$
(14)

The methyl radicals formed by reaction 14 add O₂ to give CH₃O₂ radicals that react with NO to produce another NO₂ molecule. Therefore, a first-order expression does not describe the NO₂ formation adequately, and the experimental transients need to be fitted using a chemical mechanism describing the chemical reactions in the system. To model the experimental absorption transients, the chemical mechanism shown in Table 1 and the absorption cross sections of NO₂ at 400.5 and 452 nm were applied. In addition, the absorption at 400.5 nm by CH₃ONO formed by the addition of CH₃O radicals to NO was included ($\sigma_{400.5 \text{ nm}}$ (CH₃ONO) = $1.7 \times 10^{-19} \text{ cm}^2$ molecule^{-1 21}). The chemical mechanism in Table 1 was constructed from the

	rate constant	
reaction	$(cm^3 molecule^{-1} s^{-1})$	ref
$O + CH_{2}CHO \rightarrow CH_{2}CO + OH$	4.5×10^{-13}	16
$O + O_2 + M \rightarrow O_2 + M$	3.1×10^{-14}	25
$O + NO + M \rightarrow NO_2 + M$	1.6×10^{-12}	16
$O + NO_2 + M \rightarrow 0.86NO_2 + 0.86O_2 + 0.14NO_2 + M$	9.7×10^{-12}	16
$C + MC_2 + M = 0.80MC + 0.80C_2 + 0.14MC_3 + M$ $E \pm CL(CL) \rightarrow CL(C) \pm LE$	1.0×10^{-10}	28
$F + CH_3CHO + CH_3CO + HIE + CH_CHO \rightarrow HC(O)CH + HE$	1.0×10^{-10}	20
$F + O + M \rightarrow FO + M$	1.0×10^{-13}	20
$\Gamma + O_2 + M \rightarrow FO_2 + M$ E + NO + M $\rightarrow FNO + M$	1.9×10^{-12}	40
$F + NO + M \rightarrow FNO + M$	5.1×10^{-11}	41, 42
$F + NO_2 + M \rightarrow FNO_2 + M$	1.5×10^{-11}	43
$CH_3CHO + OH \rightarrow CH_3CO + H_2O$	1.6×10^{-11}	22
$NO + OH + M \rightarrow HONO + M$	4.8×10^{-12}	16
$NO_2 + OH + M \rightarrow HNO_3 + M$	1.1×10^{-11}	16
$CH_3CO + O_2 + M \rightarrow CH_3C(O)O_2 + M$	3.2×10^{-12}	26
$CH_3CO + NO + M \rightarrow CH_3C(O)NO + M$	2.6×10^{-11}	a
$CH_3CO + NO_2 + M \rightarrow CH_3C(O)NO_2 + M$	1.6×10^{-11}	a
$CH_3CO + CH_3CO + M \rightarrow CH_3C(O)C(O)CH_3 + M$	2.0×10^{-11}	44
$CH_3C(O)O_2 + CH_3C(O)O_2 \rightarrow 2CH_3 + 2CO_2 + O_2$	1.66×10^{-11}	22
$CH_3C(O)O_2 + NO \rightarrow CH_3 + CO_2 + NO_2$	$2.0 imes 10^{-11}$	this work
$CH_3C(O)O_2 + NO_2 + M \rightarrow CH_3C(O)O_2NO_2 + M$	$1.0 imes 10^{-11}$	this work
$CH_3C(O)O_2 + CH_3O_2 \rightarrow CH_3 + CO_2 + CH_3O + O_2$	$5.5 imes 10^{-12}$	22
$CH_3C(O)O_2 + CH_3O_2 \rightarrow CH_3C(O)OH + HCHO + O_2$	$5.5 imes 10^{-12}$	22
$CH_3 + O_2 + M \rightarrow CH_3O_2 + M$	1.07×10^{-12}	28
$CH_3 + NO + M \rightarrow CH_3NO + M$	$1.04 imes 10^{-11}$	28
$CH_3 + NO_2 \rightarrow products$	$1.6 imes 10^{-11}$	a
$CH_{3}O_{2} + NO \rightarrow CH_{3}O + NO_{2}$	7.7×10^{-12}	22
$CH_3O_2 + NO_2 + M \rightarrow CH_3O_2NO_2 + M$	$7.5 imes 10^{-12}$	22
$CH_{3}O + NO + M \rightarrow CH_{3}ONO + M$	2.5×10^{-11}	16
$CH_3O + NO_2 + M \rightarrow CH_3ONO_2 + M$	1.7×10^{-11}	16
$O_2 + NO \rightarrow NO_2 + O_2$	1.8×10^{-14}	16
$NO + NO_2 \rightarrow NO_2 + NO_2$	2.6×10^{-11}	16
$NO_2 + NO_2 + M \rightarrow N_2O_5 + M$	1.3×10^{-12}	16
$CH_2CHO + NO_2 \rightarrow HNO_2 + CH_2CO$	2.4×10^{-15}	16
$HC(\Omega)CH_{2} + \Omega_{2} + M \rightarrow HC(\Omega)CH_{2}\Omega_{2} + M$	2.4×10^{-13}	10
$HC(O)CH_2 + O_2 + M \rightarrow HC(O)CH_2O_2 + M$ $HC(O)CH_2 + NO + M \rightarrow HC(O)CH_2NO + M$	2.5×10^{-11}	46
$HC(O)CH_2 + NO_1 + M \rightarrow HC(O)CH_2NO_1 + M$	2.5×10^{-11}	40
$HC(0)CH_2 + HO_2 + M = HC(0)CH_2HO_2 + M$ $HC(0)CH_2 + M \rightarrow HC(0)CH_2HO_2 + M$	1.9×10^{-11}	47
$HC(0)CH_2 + HC(0)CH_2 + M = HC(0)CH_2CH_2CH_2CH_0 + M$	4.8×10^{-12}	u
$HC(0)CH_{2}O_{2} + NO + M \rightarrow HC(0)CH_{2}O + NO_{2}$	6×10^{-12}	u a
$\frac{11}{10} \frac{1}{10} $	0.4×10^{-12}	a
$0.25HC(0)CH_2OH + O_2$	8 × 10	a
$HC(O)CH_2O_2 + CH_3C(O)O_2 \rightarrow HC(O)CH_2O + CH_3 + CO_2 + O_2$	$2.5 imes 10^{-12}$	а
$HC(O)CH_2O_2 + CH_3C(O)O_2 \rightarrow CHOCHO + CH_3C(O)OH + O_2$	$2.5 imes 10^{-12}$	а
$HC(O)CH_2O_2 + CH_3O_2 \rightarrow HC(O)CH_2O + CH_3O + O_2$	1.1×10^{-12}	а
$HC(O)CH_2O_2 + CH_3O_2 \rightarrow stable products$	$2.7 imes 10^{-12}$	а
$HC(O)CH_2O + NO \rightarrow stable products$	$2.5 imes 10^{-11}$	b
$HC(O)CH_2O + NO_2 \rightarrow stable products$	$1.7 imes 10^{-11}$	b

^{*a*} Assumed equal to the analogous reactions for the acetonyl radical CH₃C(O)CH₂.^{48,49} ^{*b*} Assumed equal to k(CH₃O + NO) and k(CH₃O + NO₂).

literature data where available. The rate constants not available in the literature were obtained as follows. It was assumed that the rate constants for the reactions of CH₃CO radicals with NO and NO₂, the reaction of CH₃ radicals with NO₂, the selfreactions of CH₃CO, HC(O)CH₂, and HC(O)CH₂O₂ radicals and the cross reactions of HC(O)CH₂O₂ radicals with CH₃C(O)O₂ and CH₃O₂ radicals are equal to the rate constants for the analogous reactions of CH₃C(O)CH₂ radicals. In addition, the distribution between molecular and radical products from these reactions was estimated from the product distribution of the analogous CH₃C(O)CH₂ reaction. Finally, it was assumed that the rate constants for the reactions of HC(O)CH₂O radicals with NO and NO₂ are equal to the reactions of CH₃O radicals with NO and NO₂.

Using this mechanism, we modeled the experimental transients in Figure 2 with k_2 varied to give the best fit. As seen from Figure 2, use of $k_2 = 2.0 \times 10^{-11}$ reproduces the experimental data well. To illustrate the sensitivity of the modeled transients to k_2 , we present simulated transients obtained using $k_2 = 1.7 \times 10^{-11}$ and 2.3×10^{-11} cm³ molecule⁻¹ s⁻¹ (for [NO] = 0.43 mbar) in Figure 2. Use of $k_2 = 1.7 \times 10^{-11}$ and 2.3×10^{-11} gives transients in which the formation of NO₂ is too slow or too fast.

In addition to reaction 2 there are several other reactions that can potentially influence the kinetics of NO₂ formation that we need to consider. First, the rate of formation of $CH_3C(O)O_2$ radicals can obviously impact the observed rate of NO₂ formation. Under our experimental conditions the pseudo-firstorder rates of formation of CH₃CO radicals (from reaction 11), CH₃C(O)O₂ radicals (from reaction 13), and NO₂ (via reaction 2) are (0.83–1.1) \times 10⁶ s⁻¹, 3.9 \times 10⁶ s⁻¹, and (1.5–3.5) \times 10^5 s⁻¹. Clearly, the formation of NO₂ is not sensitive to the rate constant for the addition reaction of O2 to the CH3CO radical. However, it is not possible to avoid some dependency of the derived rate constant k_2 on the value used for the O + CH₃CHO reaction. For this reason separate experiments were performed in which the reaction of F atoms with CH₃CHO was used as a source of CH₃CO radicals. As discussed in section 3.3, the value of k_2 determined in these separate experiments was indistinguishable from that presented in the present section.

Second, the formation of NO₂ is also dependent on the rate constant for the reaction of CH_3O_2 with NO. Fortunately, the rate constant for this reaction is well established.^{16,22–24} It mainly influences the formation rate of the last part of the NO₂ transient while k_2 determines the formation rate of NO₂ just after the electron pulse. Consequently, the $CH_3C(O)O_2 + NO$ and $CH_3O_2 + NO$ reactions are partially separated in time.

Third, CH₃O radicals are formed in the reaction of CH₃O₂ with NO. Under the present experimental conditions the fate of CH₃O radicals is addition to either NO or NO₂ to give CH₃-ONO or CH₃ONO₂. CH₃ONO has a small, but significant, absorption at the wavelengths used to monitor NO₂ formation. CH_3ONO_2 does not absorb in the region 400–450 nm.²¹ The absorption associated with the formation of CH₃ONO was included in the model using an absorption cross section of 1.7 \times 10⁻¹⁹ cm² molecule^{-1 21} at 400.5 nm. At 452 nm the absorption due to CH₃ONO is negligible.²¹ Finally, the value of the rate constant for the self-reaction of CH₃C(O)O₂ radicals, $1.6 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$, also affects the measurements. The half-life for the self-reaction between CH₃C(O)O₂ radicals is $t_{1/2} = 1/(2k[CH_3C(O)O_2]) = 52 \ \mu s$ (calculated using an average concentration of CH₃C(O)O₂ radicals [CH₃C(O)O₂] \approx $0.6 \times 10^{15} \text{ cm}^{-3}$). The half-life for the reaction of CH₃C(O)- O_2 radicals with NO is 2–5 μ s, at least an order of magnitude faster than the self-reaction. Therefore, the influence of the selfreaction of $CH_3C(O)O_2$ is small. A simulation using [NO] = 0.43 mbar and the kinetic model in Table 1 shows that 7% of the $CH_3C(O)O_2$ radicals are removed by the self-reaction.

In summary, although the mechanism used to model the experimental data (see Table 1) is complex, reaction 2 is the key reaction that determines the rate of NO₂ formation. Other reactions play a minor role, and the influence of these reactions is explicitly taken into account. As seen in Figure 2, using $k_2 = 2.0 \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ gives a good fit to experimental transients obtained using a range of NO concentrations. Also shown in Figure 2 are numerical simulations using $k_2 = 1.7 \times 10^{-11}$ and 2.3×10^{-11} cm³ molecule⁻¹ s⁻¹, which are well outside the error limits of the experiment. In light of the number of experimental absorption transients (nine) that are well fitted using $k_2 = 2.0 \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ and the relatively well-established kinetic mechanism used for the simulations, we choose to quote a final value of $k_2 = (2.0 \pm 0.3) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹.

3.2. Absolute Rate Constant for the Reaction of CH₃C-(O)O₂ Radicals with NO₂ Using O-Atom Initiation. The decay of NO₂ was studied by monitoring the absorbance at 400.5 and 452 nm following the radiolysis (full dose) of 0.235-0.58mbar NO₂, 50 mbar of O₂, 100 mbar of CH₃CHO, and 850 mbar CO₂. Figure 3 shows typical absorption transients obtained using 400.5 nm as the detection wavelength. The decay rate increased with increasing NO₂ concentration. The absorption loss at 400.5 and 452 nm was observed to scale in a manner consistent with the absorption cross sections of NO₂ at these wavelengths. It seems reasonable to ascribe the observed loss of absorbance at 400.5 and 452 nm to loss of NO₂.

The chemical mechanism in Table 1 was used to model the experimental transients in Figure 3 with k_3 varied to give the best fit. As seen from Figure 3 the absorption transients were well fitted using $k_3 = 1 \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹. To illustrate the sensitivity of the modeled transients to k_3 , we present simulated transients obtained using $k_3 = 8 \times 10^{-12}$ and 12×10^{-12} cm³ molecule⁻¹ s⁻¹ (for [NO₂] = 0.305 mbar) in Figure 3. The modeled transients using $k_3 = 8 \times 10^{-12}$ and 12

Figure 3. Absorption transients obtained at 400.5 nm following pulsed radiolysis of mixtures of 0.235–0.58 mbar NO₂, 50 mbar O₂, 100 mbar CH₃CHO, and 850 mbar CO₂ (single pulses, full dose, and optical path length of 120 cm). The smooth solid lines are simulations using $k_3 = 1 \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹. Additional simulations of the transient where [NO₂]₀ = 0.305 mbar using $k_3 = 0.8 \times 10^{-11}$ and 1.2×10^{-11} cm³ molecule⁻¹ s⁻¹ are shown with smooth dashed lines.

× 10^{-12} cm³ molecule⁻¹ s⁻¹ fall well outside the noise level of the experimental absorption transients; hence, we report $k = (10 \pm 2) \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹.

Several reactions could potentially interfere with the above determination of k_3 . First, the O atoms may react with species other than CH₃CHO. O atoms generated by the radiolysis pulse can react via the following reactions:

$$O + CH_3CHO \rightarrow CH_3CO + OH$$
 (11)

$$O + O_2 + M \rightarrow O_3 + M \tag{15}$$

$$O + NO_2 \rightarrow NO + O_2 \tag{16a}$$

$$O + NO_2 + M \rightarrow NO_3 + M$$
 (16b)

For our experimental conditions with $[O_2] = 50$ mbar, $[NO_2] = 0.235-0.58$ mbar, and $[CH_3CHO] = 100$ mbar and using rate constants of $k_{11} = 4.5 \times 10^{-13}$, ${}^{16}k_{15} = 3.1 \times 10^{-14}$, ${}^{25}k_{16a} = 9.7 \times 10^{-12}$, 16 and $k_{16b} = 1.6 \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹, 16 we calculate that >85% of the O atoms react to give CH₃CO and OH radicals, <3% of the O atoms are converted into O₃, <1.7% of the O atoms are converted into NO, and <10.6% of the O atoms are converted into NO, and NO₃ produced by reactions 15 and 16 are not expected to complicate the study of reaction 3.

Second, CH_3CO radicals formed via reactions 11 or 12 can react with either O_2 or NO_2 :

$$CH_3CO + O_2 + M \rightarrow CH_3C(O)O_2 + M$$
(13)

$$CH_3CO + NO_2 + M \rightarrow CH_3C(O)NO_2 + M$$
 (17)

The rate constant for reaction 13 is 3.2×10^{-12} cm³ molecule⁻¹ s^{-1.26} There are no available data for reaction 17 at higher pressures. Assuming that the rate constant for reaction 17 is equal to that for the reaction between CH₃COCH₂ radicals and NO₂ of 2.6 × 10⁻¹¹ cm³ molecule⁻¹ s⁻¹, we calculate that <9.1% of the CH₃CO radicals react via reaction 17 and that >90.9% of the CH₃CO radicals form CH₃C(O)O₂. Since

reaction 17 only consumes a small fraction of the CH_3CO radicals and since $CH_3C(O)NO_2$ is a closed-shell molecule, the formation of this species is not expected to interfere with this study.

Third, the formation rate of CH₃C(O)O₂ may influence the decay rate of NO₂. The pseudo-first-order rate constants for formation of CH₃CO and CH₃C(O)O₂ and for loss of NO₂ (from CH₃C(O)O₂ + NO₂) are 1.1×10^6 , 3.9×10^6 , and $(0.58-1.4) \times 10^5 \text{ s}^{-1}$. Hence, the NO₂-loss rate is mainly dependent on k_3 with only minor influences from k_{12} and k_{15} .

Fourth, some CH₃C(O)O₂ radicals will undergo self-reaction leading to formation of CH₃ radicals, CO₂, and O₂. The halflife for the self-reaction between CH₃C(O)O₂ radicals is $t_{1/2} =$ $1/(2k[CH_3C(O)O_2]) = 52 \ \mu s$ using an average concentration of CH₃C(O)O₂ radicals, $[CH_3C(O)O_2] \approx 0.6 \times 10^{15} \text{ cm}^{-3}$. The half-life for the reaction of CH₃C(O)O₂ radicals with NO₂ is $5-12 \,\mu s$ or 5-10 times faster than the self-reaction of CH₃C- $(O)O_2$ radicals. The CH₃ radicals formed by the self-reaction will either react with O₂ to give CH₃O₂ radicals (which will react with NO₂) or react directly with NO₂. Both reactions lead to loss of another NO₂. The impact of the self-reaction of $CH_3C(O)O_2$ radicals is a slower overall decay of NO_2 since the loss of NO₂ is delayed. Self-reaction is the fate of up to 25% of the $CH_3C(O)O_2$ radicals. As seen in Figure 3, the chemical mechanism in Table 1 with $k_3 = 1.0 \times 10^{-11}$ provides a good fit for transients observed in the presence of 0.235-0.58 mbar of NO₂. The importance of the self-reaction as a loss of CH₃C- $(O)O_2$ radicals varies by a factor of 2.5 over this range of $[NO_2]$, while the quality of the fits is unchanged, suggesting that the mechanism used here provides an adequate account of the $CH_3C(O)O_2$ radical self-reaction. We choose to report $k_3 =$ $(1.0 \pm 0.2) \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ as determined above.

3.3. Absolute Rate Constant for the Reaction of CH₃C(O)-O₂ Radicals with NO Using F-Atom Initiation. The formation of NO₂ was studied by monitoring the absorbance at 400.5 and 452 nm following the radiolysis (53% of full dose) of gas mixtures of 0.29–0.61 mbar of NO, 50 mbar of O₂, 10 mbar of CH₃CHO, and 940 mbar of SF₆. Figure 4 shows four absorption transients obtained at 400.5 nm. The maximum transient absorption at 400.5 and 452 nm was observed to scale in a fashion consistent with the absorption cross sections for NO₂ at these two wavelengths, and the formation rate increased with increasing NO concentration. We attribute the observed increase in absorption to NO₂ formed by the reaction of peroxy radicals with NO. However, three peroxy radicals could be formed in the system. CH₃C(O)O₂ radicals are formed by the following reactions:

$$F + CH_3CHO \rightarrow CH_3CO + HF$$
(18)

$$CH_3CO + O_2 + M \rightarrow CH_3C(O)O_2 + M$$
(13)

From the rate constants in Table 1 and correcting the yield of $CH_3C(O)O_2$ radicals for small losses of CH_3CO radicals and F atoms due to reaction with NO, we calculate that 64–68% of the initially formed F atoms are converted into $CH_3C(O)O_2$ radicals. $HC(O)CH_2O_2$ radicals are formed by the reactions

$$F + CH_3CHO \rightarrow HC(O)CH_2 + HF$$
 (19)

$$HC(O)CH_2 + O_2 + M \rightarrow HC(O)CH_2O_2 + M \quad (20)$$

Using the rate constants in Table 1, we calculate that 13-18% of the F atoms are converted to HC(O)CH₂O₂ radicals.

Figure 4. Absorption transients at 400.5 nm following pulsed radiolysis of mixtures of 0.29–0.61 mbar NO, 50 mbar O₂, 10 mbar CH₃CHO, and 940 mbar SF₆ (single pulses, 53% of full dose, and optical path length of 120 cm). For clarity, the transients are separated vertically by 0.01 units. The smooth solid lines are simulations using $k_2 = 2 \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹. Additional simulations of the transient where [NO]₀ = 0.50 mbar with *k*(HC(O)CH₂O₂ + NO) varied by a factor of 2 (short-dashed lines, hardly distinguishable from the solid and the long-dashed lines) and $k_2 = 1.6 \times 10^{-11}$ and 2.4 × 10⁻¹¹ cm³ molecule⁻¹ s⁻¹ are shown with smooth long-dashed lines.

In addition to these two peroxy radicals, CH₃O₂ radicals are formed via the following set of reactions:

$$CH_3C(O)O_2 + NO \rightarrow CH_3C(O)O + NO_2$$
 (2a)

$$CH_3C(O)O + M \rightarrow CH_3 + CO_2 + M$$
 (11)

$$CH_3 + O_2 + M \rightarrow CH_3O_2 + M \tag{9}$$

From the rate constants in Table 1 and neglecting radical– radical chemistry, we calculate a yield of CH_3O_2 radicals of 59–65% relative to the initial F-atom yield.

We have a mixture of three different peroxy radicals that can react with NO to produce NO₂. It is not possible to derive k_2 from a fit of an analytical expression to the experimental absorption transient; instead, it is necessary to model the absorption transient. The rate constant for the reaction of CH₃O₂ with NO is well-known and can be well represented in the model. However, the rate constant for the reaction of HC(O)-CH₂O₂ radicals with NO is not known and the fate of the subsequently formed radical, HC(O)CH₂O, is unknown. In the following we have assumed that $k(HC(O)CH_2O_2 + NO) =$ $k(CH_3C(O)CH_2O_2 + NO) = 8 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}.^{27}$ It was also assumed that HC(O)CH₂O radicals are the only product of the reaction between HC(O)CH₂O₂ radicals and NO. The fate of HC(O)CH₂O radicals in the system has been shown to be reaction with NO to give HC(O)CH₂ONO.²⁸ The experimental transients shown in Figure 4 were modeled using the mechanism given in Table 1 with $k(HC(O)CH_2O_2 + NO)$ $= 8 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. The model reproduced the experimental absorption transients well. As a check of the sensitivity of the model to $k(HC(O)CH_2O_2 + NO)$, we modeled an absorption transient with $[NO]_0 = 0.50$ mbar, changing k(HC- $(O)CH_2O_2 + NO)$, up and down by a factor of 2. The result is shown in Figure 4. The modeled curves are shown as smooth, short-dashed lines that can hardly be distinguished from the solid and long-dashed lines. We conclude that the result is not very

Figure 5. Absorption transients obtained at 400.5 nm following pulsed radiolysis of mixtures of 0.285–0.555 mbar NO₂, 50 mbar O₂, 10 mbar CH₃CHO, and 940 mbar SF₆ (single pulses, 53% of full dose, and optical path length of 120 cm). The smooth solid lines are simulations using $k_3 = 1 \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹. Additional simulations of the transient where [NO₂]₀ = 0.397 mbar using $k_3 = 0.8 \times 10^{-11}$ and 1.2×10^{-11} cm³ molecule⁻¹ s⁻¹ are shown with smooth dashed lines.

sensitive to $k(\text{HC}(\text{O})\text{CH}_2\text{O}_2 + \text{NO})$. We estimate the uncertainty in $k(\text{CH}_3\text{C}(\text{O})\text{O}_2 + \text{NO})$ due to uncertainty in $k(\text{HC}(\text{O})\text{-}\text{CH}_2\text{O}_2 + \text{NO})$ to be 0.2×10^{-11} cm³ molecule⁻¹ s⁻¹.

Finally, as a check of the sensitivity of the model to $k(CH_3C-(O)O_2 + NO)$, we modeled the absorption transient in Figure 4 with $[NO]_0 = 0.50$ mbar using $k(CH_3C(O)O_2 + NO) = 1.6 \times 10^{-11}$ and 2.4×10^{-11} cm³ molecule⁻¹ s⁻¹. The derived transients are shown in Figure 4 with long-dashed lines. As seen from Figure 4, the fits are sensitive to the value of $k(CH_3C-(O)O_2 + NO)$. Eight experiments were well described by the model using $k(CH_3C(O)O_2 + NO) = 2.0 \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹. From the F-atom-initiated experiments, we derive $k(CH_3C(O)O_2 + NO) = (2.0 \pm 0.5) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹; the quoted errors reflect both statistical uncertainties and our estimate of possible systematic uncertainties associated with $k(HC(O)CH_2O_2 + NO)$. This result is consistent with, although less precise than, that reported in section 3.1.

3.4. Absolute Rate Constant for the Reaction of CH₃C-(O)O₂ Radicals with NO₂ Using F-Atom Initiation. The decay of NO₂ was studied by monitoring the absorbance at 400.5 and 452 nm following the radiolysis (53% of full dose) of mixtures of 0.285–0.63 mbar of NO₂, 50 mbar of O₂, 10 mbar of CH₃CHO, and 940 mbar of SF₆. Figure 5 shows typical absorption transients obtained at 400.5 nm. The decay rate increased with increasing NO₂ concentration. The absorption loss at 400.5 and 452 nm scaled with the absorption cross sections of NO₂ at these wavelengths. We ascribe the observed loss of absorbance to loss of NO₂ via reaction 3. The transients in Figure 5 were modeled using the mechanism given in Table 1. The best fits were achieved using $k_3 = 1.0 \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ and are shown as the smooth curves.

Before the NO₂ loss rate can be used to determine the rate constant for reaction 3 we need to consider possible interfering reactions. As discussed in section 3.3, three different peroxy radicals are formed in the system. $CH_3C(O)O_2$ and $HC(O)-CH_2O_2$ are produced following reaction of F atoms with CH_3-CHO . CH_3O_2 radicals are formed following the self-reaction of $CH_3C(O)O_2$ radicals as discussed below. We estimate the yields of $CH_3C(O)O_2$ and $HC(O)CH_2O_2$ radicals to be 66–69%

Figure 6. Arrhenius plot for k_{-3} at 700 (**•**) Torr total pressure of N₂ diluent. The solid line is a linear least-squares fit. Previous data for k_{-3} reported by Tuazon et al.³⁰ (at 740 Torr), Bridier et al.⁵ (at 600 Torr), Roberts and Bertman³¹ (at 760 Torr), Roumelis and Glavas³² (at 760 Torr), and Grosjean et al.³³ (at 750 Torr) are indicated by the squares, triangles, diamonds, inverted triangles, and dotted line, respectively. The insert shows the observed decay of CH₃C(O)O₂NO₂ at 293.0 (triangles), 300.6 (circles), and 308.3 K (diamonds) in 700 Torr of N₂ diluent.

and 15–20% of the initial F-atom yield. The remaining F atoms are consumed by reaction with NO₂. Hence, 77–82% of the initially formed peroxy radicals are CH₃C(O)O₂ radicals. To simulate the observed absorption transient, we had to assume that $k(\text{HC}(O)\text{CH}_2\text{O}_2 + \text{NO}_2)$ is $6.4 \times 10^{-12} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ by analogy to $k(\text{CH}_3\text{C}(O)\text{CH}_2\text{O}_2 + \text{NO}_2)$.²⁷

An additional complication is that the self-reaction of the $CH_3C(O)O_2$ radicals is relatively fast. Therefore, a nonnegligible fraction of the CH₃C(O)O₂ radicals undergoes self-reaction to give CH₃C(O)O radicals that decompose to CH₃ radicals and CO_2 . The half-life for the self-reaction between $CH_3C(O)O_2$ radicals is $t_{1/2} = 1/(2kC_{\text{average}}) = 52 \ \mu\text{s}$ using an average concentration of CH₃C(O)O₂ radicals $C_{\text{average}} \approx 0.6 \times 10^{15} \text{ cm}^{-3}$. The half-life for the reaction of $CH_3C(O)O_2$ radicals with NO_2 is 5–10 μ s or 5–10 times faster than the self-reaction of the CH₃C(O)O₂ radical. The CH₃ radicals formed by the selfreaction will react with NO2 either directly or indirectly (via formation of CH₃O₂). Both reactions lead to loss of NO₂. The effect of the self-reaction of CH₃C(O)O₂ radicals is a slower overall decay of NO₂, since the loss of NO₂ is delayed. However, since the model can fit all absorption transients with different initial NO₂ concentrations and since it is possible to determine the fate of the products of the self-reaction of CH₃C-(O)O₂ radicals, this reaction is a complication that can be dealt with.

Finally, we checked the sensitivity of the model to k_3 . Figure 5 shows two dashed lines that are simulations of the experiment with $[NO]_0 = 0.397$ mbar using $k_3 = 8 \times 10^{-12}$ and 12×10^{-12} cm³ molecule⁻¹ s⁻¹. Clearly, these two simulations fall well outside the noise level of the transient. We choose to report $k_3 = (1.0 \pm 0.2) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹. This result is consistent with that reported in section 3.2.

TABLE 2:	Measured	Values	for	k_{-3}

temp (K)	total pressure (Torr) (nitrogen diluent)	k_{-3} (10 ⁻³ s ⁻¹)
308.3	700	1.95 ± 0.14
306.8	700	1.38 ± 0.09
300.6	700	0.557 ± 0.031
296.4	700	0.371 ± 0.058
293.0	700	0.188 ± 0.010
293.1	100	0.162 ± 0.015
293.1	30	0.141 ± 0.014

^{*a*} Quoted errors are two standard deviations.

3.5. Thermal Stability of CH₃C(O)O₂NO₂. As a preliminary exercise prior to measurement of k_2/k_3 , control experiments were performed to measure the thermal stability of CH₃C(O)O₂-NO₂. To check for heterogeneous loss of CH₃C(O)O₂NO₂ in the chamber at Ford, a mixture of $CH_3C(O)O_2NO_2$ in the presence of a large excess of NO₂ was left in the chamber in the dark for 64 min at 308 K. There was no loss (<2%) of CH₃C(O)O₂NO₂, suggesting the absence of complications caused by heterogeneous loss processes (PAN is known to be very stable in the NCAR chamber²⁹). Addition of NO to reaction mixtures containing CH₃C(O)O₂NO₂ led to a decay of this species. In the presence of excess NO, the loss of CH₃C(O)O₂NO₂ was not dependent on the NO concentration. The loss of $CH_3C(O)O_2NO_2$ in the presence of NO is not caused by a reaction of these two compounds. Instead, NO scavenges CH₃C(O)O₂ radicals formed in the thermal decomposition of $CH_3C(O)O_2NO_2$, thereby limiting the re-formation of $CH_3C(O)O_2$ -NO₂ via reaction 3:

$$CH_3C(O)O_2NO_2 + M \rightarrow CH_3C(O)O_2 + NO_2 + M \quad (-3)$$

$$CH_3C(O)O_2 + NO_2 + M \rightarrow CH_3C(O)O_2NO_2 + M$$
 (3)

$$CH_3C(O)O_2 + NO \rightarrow CH_3C(O)O + NO_2$$
 (2)

The decay of CH₃C(O)O₂NO₂ followed first-order kinetics. Representative data are shown in the insert in Figure 6. Linear least-squares analysis of these data gives pseudo-first-order rate constants for the thermal decomposition of CH₃C(O)O₂NO₂. CH₃C(O)O₂NO₂ can be regenerated via reaction 3. The observed rate of CH₃C(O)O₂NO₂ decay k_{obs} is related to the true rate of decay k_{-3} by the expression

$$k_{-3} = k_{obs}(1 + (k_3[NO_2]/k_2[NO]))$$

The observed CH₃C(O)O₂NO₂ decay rate k_{obs} was corrected for regeneration via reaction 3 using $k_3 = 1.0 \times 10^{-11}$ and $k_2 = 2.0 \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ (see previous sections). The concentrations of NO and NO₂ in the chamber were monitored using their characteristic IR absorptions. Corrections were in the range 2–10% and have been applied to the data given in Table 2 and the Arrhenius plot in Figure 6.

Experiments were performed at a variety of temperatures over the range 293–308 K. Results are listed in Table 2 and plotted in Figure 6 together with previous measurements of k_{-3} by Tuazon et al.³⁰ at 740 Torr, Bridier et al.⁵ at 600 Torr, Roberts and Bertman³¹ at 760 Torr, Roumelis and Glavas³² at 760 Torr, and Grosjean et al.³³ at 750 Torr. As seen from Figure 6, the results from the present work are in excellent agreement with all previous measurements except those of Grosjean et al.³³ which lie 20–30% below the rest of the data. To test for the effect of total pressure, experiments were performed at 293 K with 30, 100, or 700 Torr total pressure. As seen from Table 2, there was a small, but significant, effect of total pressure on

Figure 7. Plot of Δ [CO₂]_{corr}/ Δ [PAN]_{corr} versus [NO]_{av}/[NO₂]_{av} at 700 Torr total pressure and 295 K. See text for details.

 k_{-3} . Reaction -3 is a unimolecular decomposition, and a decrease in k_{-3} with decreasing total pressure is to be expected. At 293 K the IUPAC data-evaluation panel recommends that when compared with the value at 700 Torr, the rate of PAN decomposition decreases by 12% and 35% at 100 and 30 Torr, respectively.²² The dependence of k_{-3} on total pressure observed in the present work is indistinguishable from that recommended by the IUPAC panel. As expected, the observed pressure dependence of k_{-3} is indistinguishable from that of k_3 (see Figure 8).

3.6. Measurement of k_2/k_3 at Ford and NCAR. The rate constant ratio k_2/k_3 was measured using the FTIR systems at Ford and NCAR in experiments employing the UV irradiation of acetaldehyde/Cl₂/NO/NO₂/O₂/N₂ mixtures.

$$\operatorname{Cl}_2 + h\nu \,(\lambda > 300 \,\mathrm{nm}) \rightarrow 2\mathrm{Cl}$$
 (21)

$$Cl + CH_3CHO \rightarrow CH_3C(O) + HCl$$
 (22)

$$CH_3C(O) + O_2 + M \rightarrow CH_3C(O)O_2 + M$$
(13)

Acetylperoxy radicals are formed via the reactions given above and then react with either NO or NO₂. As discussed above, reaction with NO leads to the formation of CO₂ while reaction with NO₂ produces peroxyacetyl nitrate (PAN). The relative importance of reactions 2 and 3 as loss mechanisms for CH₃C-(O)O₂ radicals depends on the concentration ratio [NO]/[NO₂] and the rate constant ratio k_2/k_3 . Provided that reactions 2 and 3 are the sole sources of CO₂ and PAN and that there are no losses of these species, then

$$\frac{[\mathrm{CO}_2]}{[\mathrm{PAN}]} = \left(\frac{k_2}{k_3}\right) \times \left(\frac{[\mathrm{NO}]}{[\mathrm{NO}_2]}\right)$$

where [CO₂], [PAN], [NO], and [NO₂] are the concentrations of CO₂, PAN, NO, and NO₂ in the chamber and k_2 and k_3 are the rate constants for reactions 2 and 3.

The first set of experiments was performed using the experimental system at Ford in 700 Torr of N₂ at 296 K using mixtures of 16–23 mTorr of $^{13}CH_3^{13}CHO$, 60 mTorr of Cl₂, 9–91 mTorr of NO, 22–56 mTorr of NO₂, and 200 Torr of O₂. Reaction mixtures were irradiated for 2–40 s, resulting in the loss of 2–24% of the initial $^{13}CH_3^{13}CHO$ and changes in the NO and NO₂ concentrations of 1–10%. In all cases the combined molar yields of CO₂ and PAN were indistinguishable from the observed acetaldehyde loss. Figure 7 shows a plot of

TABLE 3:	Measured	Values	for	k_2/k	61
----------	----------	--------	-----	---------	----

temp (K)	total pressure (Torr) (nitrogen diluent)	k_2/k_3
295 (Ford data)	700	2.07 ± 0.21^{a}
295 (Ford data)	300	2.38^{b}
295 (Ford data)	100	2.70^{b}
295 (Ford data)	50	3.36^{b}
295 (Ford data)	25	3.12^{b}
295 (Ford data)	5.9	5.46^{b}
283 (NCAR data)	700	2.2 ± 0.2
283 (NCAR data)	30	2.9 ± 0.3
243 (NCAR data)	700	2.1 ± 0.2
243 (NCAR data)	100	2.4 ± 0.2

^{*a*} Obtained from linear least-squares analysis of the data in Figure 7. ^{*b*} Single point determinations.

 $[CO_2]/[PAN]$ versus $[NO]_{av}/[NO_2]_{av}$ for experiments conducted at 700 Torr and 295 K, where $[NO]_{av}$ and $[NO_2]_{av}$ are the average concentrations of NO and NO₂ during the experiment. As expected, there is a linear relationship between $[CO_2]/[PAN]$ and $[NO]_{av}/[NO_2]_{av}$. Linear least-squares analysis of the data in Figure 7 gives $k_2/k_3 = 2.17 \pm 0.15$.

Derivation of the rate-constant ratio k_2/k_3 relies on the assumption that CO2 and PAN are formed solely as a result of reactions 2 and 3 and are not lost via any process. Although it is difficult to imagine other sources of PAN in the chamber, it is not difficult to imagine other sources of CO₂. A control experiment was performed in which a mixture of 24 mTorr of ¹³CH₃¹³CHO, 77 mTorr of Cl₂, 35 mTorr of NO, and 84 Torr of O2 in 700 Torr total pressure of N2 diluent was subjected to four successive 10-s periods of UV irradiation, leading to 21% consumption of the acetaldehyde. The molar yield of ¹³CO₂ (relative to loss of acetaldehyde) was $95 \pm 8\%$; PAN was just detectable with a yield of 1-2%. The fact that the ¹³CO₂ yield was not significantly greater than 100% shows that there are no confounding sources of CO2 in this chemical system. Although there are no possible loss mechanisms for CO₂ in the reactor there are several possible loss processes for PAN that need consideration. PAN can be lost via thermal decomposition (see previous section), heterogeneous reactions, and reaction with Cl atoms or OH radicals (OH radicals are formed in the system via reaction of HO₂ radicals with NO). As discussed in the previous section, there was no evidence for heterogeneous loss of PAN in the chamber systems. PAN reacts very slowly with both Cl atoms and OH radicals,34 and such reactions will not be significant in the present work. Finally, the yields of CO₂ and PAN can be corrected for the thermal decomposition of PAN during the 1-5 min taken for UV irradiation and data acquisition using the value of $k_{-3} = 3.9 \times 10^{-4} \text{ s}^{-1}$ reported in the previous section. Corrections were in the range 1-6% and have been applied to the data in Figure 7. Linear least-squares analysis of the data in Figure 7 gives $k_2/k_3 = 2.07 \pm 0.21$ at 700 Torr and 295 K. Additional experiments were performed at reduced total pressures at 295 K. The results of these singlepoint determinations are given in Table 3. On the basis of the data scatter evident in Figure 7, we estimate that the singlepoint determinations have an associated uncertainty of $\pm 15\%$.

The increase in k_2/k_3 with decreasing pressure reflects a decrease in the association rate constant k_3 with decreasing pressure. There have been three studies of the effect of pressure on k_3 .^{5–7} The most comprehensive study is that of Bridier et al.⁵ The current data have been converted to absolute values for k_3 by use of $k_2 = 2.0 \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ measured here and by Villalta and Howard.¹¹ The data are shown in Figure 8 along with those of Bridier et al., and the fitted line to their data. The current data are indistinguishable from those

Figure 8. Pressure dependence for k_3 at 295 K measured in the present work (circles) and by Bridier et al.⁵ (triangles).

of Bridier et al., and a nonlinear least-squares fit to the combined data set returns the same values of the parameters in the Troe expression: $k_0 = 2.7 \times 10^{-28}$ and $k_{inf} = 1.2 \times 10^{-11}$ for $F_c = 0.3$ and $N_c = 1.41$.

Analogous experiments were performed at NCAR at 243 and 283 K for pressures between 30 and 700 Torr. For the initial experiments a resolution of 0.5 cm^{-1} was used. At the lower pressures the dependences of the absorption due to CO₂ and NO₂ became very nonlinear because of underresolution and saturation. The resolution was increased to 0.1 cm^{-1} , and concentrations were determined by the use of integrated line intensities rather than peak heights. This led to an improvement in the accuracy of measurements of these species. At the lowest temperature and pressure, the problem of CO₂ measurement was avoided by the measurement of CH₃ONO₂ instead of CO₂. At the low temperatures and low O₂ partial pressure, methyl nitrate is formed following the reaction of peroxyacetyl radicals with NO:

$$CH_3C(O)O_2 + NO \rightarrow CH_3 + CO_2 + NO_2$$
 (2)

$$CH_3 + O_2 + M \rightarrow CH_3O_2 + M \tag{9}$$

$$CH_3O_2 + NO \rightarrow CH_3O + NO_2$$
 (23)

$$CH_3O + NO_2 + M \rightarrow CH_3ONO_2 + M$$
 (24)

The spectral features of methyl nitrate are smooth, and its concentration varied linearly with that of PAN over five or six irradiations.

The results are included in Table 3. When combined with the temperature dependence for the rate constant k_2 measured by Villalta and Howard,¹¹ the results at lower temperatures agree to within 5% with those predicted by the falloff parameters given by Bridier et al.,⁵ further confirming the pressure dependence reported there. Because of the strong negative temperature dependence of k_3 at low pressure, measurements at low temperature do not extend very far into the falloff region, and so the parameters for k_0 could not be improved.

4. Discussion and Conclusion

Recently, two groups have reported direct kinetic studies of the reaction of CH₃C(O)O₂ radicals with NO.^{10,11} At room temperature (295–298 K) Villalta and Howard,¹¹ and Maricq and Szente¹⁰ obtain values for k_2 of (2.0 ± 0.3) × 10⁻¹¹ and

Figure 9. Comparison of literature data for k_2/k_3 at, or near, ambient pressure with results from the present work: Cox et al.³⁵ (diamond), Kenley and Hendry³⁸ (dotted line), Kirchner et al.³⁷ (triangles), Tuazon et al.³⁰ (squares), Seefeld et al.³⁹ (open circles), this work (filled circles). The solid line is drawn at $k_2/k_3 = 2.17$. The dashed line represent ±15%.

 $(1.4 \pm 0.2) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹, respectively. Our value of $k_2 = (2.0 \pm 0.3) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹ clearly supports the work of Villalta and Howard. Maricq and Szente¹⁰ measured the formation of NO₂ and the loss of NO using IR and the formation and decay of CH₃C(O)O₂, CH₃O₂, and CH₃-ONO using UV absorption. The experimental data were fitted using a complex mechanism; hence, the value of the rate-constant is obtained less directly than that of Villalta and Howard but in a way very similar to the work reported here. The origin of the discrepancy between the results of Maricq and Szente¹⁰ and that measured here and by Villalta and Howard¹¹ is unknown.

Bridier et al.⁵ determined a value for k_3 of 9.6 \times 10⁻¹² cm³ molecule⁻¹ s⁻¹ at 1 bar total pressure and a high-pressure limit of $(1.2 \pm 0.2) \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹. k_2 was determined at 1 bar total pressure of SF_6 or CO_2 in this work. SF_6 and CO2 are generally more efficient third bodies than air, and it is expected from the results of Bridier et al.⁵ that the value of k_3 determined here should lie between 0.96 and $1.2 \times 10^{-11} \text{ cm}^3$ molecule $^{-1}$ s $^{-1}$. This prediction is in excellent agreement with $k_3 = (1.0 \pm 0.2) \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1} \text{ obtained here.}$ The rate-constant values of Addison et al.6 and Basco and Parmar⁷ fall below those obtained here and the values of Bridier et al. As discussed elsewhere,^{8,9} the chemical mechanism used in the data analysis of Bridier et al.5 was more complete than those used by Addison et al.⁶ and Basco and Parmer.⁷ Hence, the results of Bridier et al. are to be preferred. As seen in Figure 8, the results from the present study are in excellent agreement with those of Bridier et al.5

There have been six previous measurements of the rateconstant ratio k_2/k_3 at, or near, atmospheric pressure (Cox et al.,³⁵ Cox and Roffey,³⁶ Kirchner et al.,³⁷ Tuazon et al.,³⁰ Kenley and Hendry,³⁸ and Seefeld et al.³⁹). Data from these previous studies are compared with the results from the present work in Figure 9. The data from Cox and Roffey³⁶ have a high degree of scatter with values ranging from 1.2 to 3.0 and are not included in the plot. All studies have concluded that the rateconstant ratio k_2/k_3 is independent of temperature. With the exception of the study of Hendry and Kenley³⁸ there is also broad agreement on the magnitude of k_2/k_3 . The solid line in Sehested et al.

Figure 9 is drawn at $k_2/k_3 = 2.17$ which is the average of the data reported by Cox et al.,³⁵ Kirchner et al.,³⁷ Tuazon et al.,³⁰ Seefeld et al.,³⁹ and the present study. The two dashed lines represent changes in k_2/k_3 by $\pm 15\%$ and encompass most of the experimental data.

In models of urban and regional air chemistry the rateconstant ratio k_2/k_3 is an important parameter that determines the formation of PAN. We recommend the use of a temperature-independent value of $k_2/k_3 = 2.17 \pm 0.33$ in such models. Although the rate-constant k_3 is pressure-dependent, for pressures near ambient the effect is modest with k_3 changing by less than 5% as the pressure is reduced from 700 to 300 Torr at 298 K. Hence, neglecting the effect of pressure on k_2/k_3 in urban and regional air-quality models is reasonable.

Acknowledgment. J.S. and O.J.N. thank the Commission of the European Communities for financial support. NCAR is partially supported by the National Science Foundation.

References and Notes

(1) Moortgat, G. K.; Veyret, B.; Lesclaux, R. J. Phys. Chem. 1989, 93, 2362.

- (2) Moortgat, G. K.; Veyret, B.; Lesclaux, R. Chem. Phys. Lett. 1989, 160, 443.
- (3) Roehl, C. M.; Bauer, D.; Moortgat, G. K. J. Phys. Chem. 1996, 100, 4038.
 - (4) Villenave, E.; Lesclaux, R. J. Phys. Chem. 1996, 100, 14372.
- (5) Bridier, I.; Caralp, F.; Loirat, H.; Lesclaux, R.; Veyret, B.; Becker, K. H.; Reimer, A.; Zabel, F. *J. Phys. Chem.* **1991**, *95*, 3594.

(6) Addison, M. C.; Burrows, J. P.; Cox, R. A.; Patrick, R. Chem. Phys. Lett. **1980**, 73, 283.

- (7) Basco, N.; Parmar, S. Int. J. Chem. Kinet. 1987, 19, 115.
- (8) Lightfoot, P. D.; Cox, R. A.; Crowley, J. N.; Destriau, M.; Hayman,

G. D.; Jenkin, M. E.; Moortgat, G. K.; Zabel, F. Atmos. Environ. **1992**, 26, 1805.

- (9) Wallington, T. J.; Dagaut, P.; Kurylo, M. J. Chem. Rev. 1992, 92, 667.
 - (10) Maricq, M. M.; Szente, J. J. J. Phys. Chem. 1996, 100, 12380.
 - (11) Villalta, P. W.; Howard, C. J. J. Phys. Chem. 1996, 100, 13624.
- (12) Hansen, K. B.; Wilbrandt, R.; Pagsberg, P. Rev. Sci. Instrum. 1979, 50, 1532.
 - (13) Sehested, J. Risø-R-804, 1994.
 - (14) Wallington, T. J.; Japar, S. M. J. Atmos. Chem. 1989, 9, 399.

(15) Shetter, R. E.; Davidson, J. A.; Cantrell, C. A.; Calvert, J. G. Rev.

Sci. Instrum. 1987, 58, 1427.

(16) DeMore, W. B.; Sander, S. P.; Golden, D. M.; Hampson, R. F.;

Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.; Kolb, C. E.; Molina,

M. J. Jet Propulsion Laboratory Publication, 94-26; Pasadena, CA, 1994. (17) Davidson, J. A.; Cantrell, C. A.; McDaniel, A. H.; Shetter, R. E.;

Madronich, S.; Calvert, J. G. J. Geophys. Res. 1988, 93, 7105.
(18) Schneider, W.; Moortgat, G. K.; Tyndall, G. S.; Burrows, J. P. J.
Photochem. Photobiol. 1987, 40, 195.

(19) Mérienne, M. F.; Jenouvrier, A.; Coquart, B. J. Atmos. Chem. 1995, 20, 281.

- (20) Tsalkani, N.; Toupance, G. Atmos. Environ. 1989, 23, 1849.
- (21) Finlayson-Pitts, B. J.; Pitts, J. J. N. Atmospheric Chemistry; John
- Wiley & Sons: New York, 1986.(22) Atkinson, R.; Baulch, D. L.; Cox, R. A.; Hampson, R. F.; Kerr, J.

A.; Troe, J. J. Phys. Chem. Ref. Data 1992, 21, 1125.
 (23) Eberhard, J.; Howard, C. J. J. Phys. Chem. 1997, 101, 3360.

- (24) Schested, J.; Nielsen, O. J.; Wallington, T. J. Chem. Phys. Lett.
 1993, 213, 257.
- (25) Sehested, J.; Nielson, O. J.; Egsgaard, H.; Larsen, N. W.; Pedersen, T.; Christensen, L. K.; Wiegell, M. J. Geophys. Res. 1995, 100, 20979.
- (26) Tyndall, G. S.; Orlando, J. J.; Wallington, T. J.; Hurley, M. D. Int. J. Chem. Kinet. 1997, 29, 655.

(27) Sehested, J.; Christensen, L. K.; Nielsen, O. J.; Bilde, M.; Wallington, T. J.; Schneider, W. F.; Orlando, J. J.; Tyndall, G. S. *Int. J. Chem. Kinet.*, in press.

(28) Sehested, J.; Christensen, L. K.; Nielsen, O. J.; Wallington, T. J. Int. J. Chem. Kinet., submitted.

(29) Orlando, J. J.; Tyndall, G. S.; Calvert, J. G. Atmos. Environ. 1992, 26A, 3111.

(30) Tuazon, E. C.; Carter, W. P. L.; Atkinson, R. J. Phys. Chem. 1991, 95, 2434.

(31) Roberts, J. M.; Bertman, S. B. Int. J. Chem. Kinet. 1992, 24, 297.

(32) Roumelis, N.; Glavas, S. Monatsh. Chem. 1992, 123, 63.

(33) Grosjean, D.; Grosjean, E.; Williams, E. L., II. J. Air Waste Manage. Assoc. 1994, 44, 391.

(34) Mallard, W. G.; Westley, F.; Herron, J. T.; Hampson, R. F. *NIST Chemical Kinetics Database*, Version 6.0; NIST Standard Reference Data; NIST: Gaithersburg, MD, 1994.

(35) Cox, R. A.; Derwent, R. G.; Holt, P. M.; Kerr, J. A. Faraday Trans. 1976, 2061.

(36) Cox, R. A.; Roffey, M. J. Environ. Sci. Technol. 1977, 11, 900.
(37) Kirchner, F.; Zabel, F.; Becker, K. H. Bunsenges. Phys. Chem. 1990, 94, 1379.

- (38) Kenley, R. A.; Hendry, D. G. J. Am. Chem. Soc. 1982, 104, 220.
 (39) Seefeld, S.; Kinnison, J.; Kerr, J. A. J. Phys. Chem. 1997, 101, 55.
 (40) Ellermann, T.; Sehested, J.; Nielsen, O. J.; Pagsberg, P.; Wallington,
- T. J. Chem. Phys. Lett. 1994, 218, 287.
 (41) Sehested, J.; Ellermann, T.; Nielsen, O. J.; Wallington, T. J. Int. J.
- Chem. Kinet. 1994, 26, 615.

- (42) Wallington, T. J.; Ellermann, T.; Nielsen, O. J.; Sehested, J. J. Phys. Chem. 1994, 98, 2346.
- (43) Pagsberg, P.; Sillesen, A.; Jodkowski, J. T.; Ratajczak, E. Chem. Phys. Lett. 1996, 252, 165.
- (44) Tsang, W.; Hampson, R. F. J. Phys. Chem. Ref. Data 1986, 15, 1087.
- (45) Lorenz, K.; Rhäsa, D.; Zellner, R.; Fritz, B. Ber. Bunsen-Ges. Phys. Chem. 1985, 89, 341.
- (46) Gutman, D.; Nelson, H. H. J. Phys. Chem. 1983, 87, 3902.
- (47) Barnhard, K. J.; Santiago, A.; He, M.; Asmar, F.; Weiner, B. R. Chem. Phys. Lett. 1991, 178, 150.
- (48) Bridier, I.; Veyret, B.; Lesclaux, R.; Jenkin, M. E. J. Chem. Soc., Faraday Trans. 1993, 89, 2993.
- (49) Cox, R. A.; Munk, J.; Nielsen, O. J.; Pagsberg, P.; Ratajczak, E. Chem. Phys. Lett. 1990, 173, 206.